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Prologue 
One of the great joys of life is observing ‘things of nature’ with as few assumptions as possible. 

When we suspend assumption, new perspectives become possible. And when we focus our 

observation on fundamental Geometric form it is indeed fertile ground for study, for here we are 

at a place where the physical and the universal are close. We recognize this strategy in the work 

of the classical Greek philosophers who forged insight through the study of regular polyhedral 

solids. We can intuit, as they did, that fundamental Geometric form reveals intrinsic universal 

principles.   

In contrast to the classical approach to Geometry study, which is characteristically static and 

quantitative, we undertake an informal qualitative study of Geometric form as it grows. From 

observations made in progressive buildout of node-based Geometric models we learn a 

vocabulary of Nature’s ‘patterning notions’1, a vocabulary that creates a conceptual fabric 

tangible enough for our reasoning to work with. When we think in terms of notions, we can sense 

‘how’ Nature expresses itself physically.   

 
1  Throughout this essay the term ‘patterning notions’ refers to a consistent underlying dynamic that is present in 
the geometric organization of patterns as they grow. While the term ‘design principle’ could be used, describing our 
observations as ‘notions’ relates them more to intuition, whereas the term ‘principles’ seems to correspond more to 
analytical reasoning. Intuitive sensing is more subtle - a necessity on this journey.  
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Two Journeys 
Geometric pattern is a language of its own.  Like music it conveys meaning beyond what can be 

described by words, symbols, or number. This language guides our awareness into the realm of 

organizing notions behind Nature’s form making.  

Models are useful and indeed necessary to learn the language of Geometry. Furthermore, it is 

crucial to work with three-dimensional (3D) models, as opposed to two-dimensional diagrams, 

for after all, Nature’s forms are three-dimensional. In the process of 3D modeling can study 

structures from different viewpoints, something not easily done with drawings or in the 

quantitative analyses found in your typical geometry textbook. 3D models held in hand 

generously reveal the fundamental notions that guide Nature’s physicalizing.   

Let’s begin a journey into Geometric form study by metaphorically entering Plato’s Academy.  

We start here as homage to human history, for this is a seminal chapter in the story of humanity 

seeking the bedrock principles behind life and physical manifestation. We start here also to delve 

into a perspective that was cemented by the classical Greek philosophers and instilled into the 

world view that we share today.   

Quantitative Study 

As we enter the Academy, we notice the beautiful furniture - the iconic Platonic Solids. 

 
 

The tetrahedron is the Platonic solid 

with three triangular faces arranged 

around every vertex. Plato 

identified this polyhedron with the 

shape of fire atoms. 

 
 

The cube is the Platonic solid with 

three square faces arranged around 

every vertex. Plato identified this 

polyhedron with the shape of earth 

atoms. 

 
 

The octahedron is the Platonic solid 

with four triangular faces arranged 

around every vertex. Plato 

identified this polyhedron with the 

shape of air atoms. 
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The icosahedron is the Platonic 

solid with five triangular faces 

arranged around every vertex. Plato 

identified this polyhedron with the 

shape of water atoms. 

 

The dodecahedron is the Platonic 

solid with three pentagonal faces 

arranged around every vertex. Plato 

identified this polyhedron with the 

shape of cosmos atoms. 

 

Table 1: Platonic Solids 
 

What characterizes the Platonic Solids as a geometrical set is that the face of each solid is a 

regular polygon of the same size and shape.  We instinctively see them as standalone ‘objects’ - 

beautiful rocks if you will.  

What characterizes the classical Greek approach to form study is that it is ‘rooted in number’, 

i.e., these solids conform to the philosophers’ intent to represent primary numbers (e.g., 3,4,5) as 

physical form.  This approach inherently begets counting, measuring and classification, 

demonstrated in Table 2 by the various descriptors of the Platonic Solids: 

 

Table 2: Characterization of the Platonic Solids 
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It also led to a system of transformations (e.g., expansion, stellation, truncation, etc.) to derive 

duals and other forms, and a nomenclature to identify them, as demonstrated in Table 3 that 

describes the thirteen Archimedean Solids. 

 

Table 3: Transformations of the Platonic Solids (The Archimedean Solids) 

 

The classical philosophers sought metaphysical meaning by associating the Platonic Solids to 

physical elements, e.g., fire, earth, air, water, and ether. While we no longer make such 

associations, we still employ the same perspective in our understanding of the world. Consider 

that the nomenclature of modern sciences, e.g., chemistry, metallurgy, crystallography, etc., are 

based upon the nomenclature of the Platonic Solids.  It is thus important to recognize that the 

classical Greeks conferred dominance to a certain modality of comprehending physical form - a 

static, ‘particle-mode’, perspective.  This is a valid and extremely useful modality of 

comprehension.  Through it our physical world has been well studied and quantified to great 
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benefit of mankind, but this inherited classical perspective has also constrained our 

understanding of the physical. I argue that it has obscured a larger significance.  

Qualitative Study 

Let us exit the Academy and re-explore fundamental geometric form in a different way; by 

simply observing, with as few assumptions as possible, geometric pattern as it emerges in 

growth.  We embark on a qualitative analysis where we study geometric patterns using a 

skeletal 3D modeling tool. There is very little counting, measuring or mathematics; we work 

with relative proportion as opposed to absolute measurement. We root our exploration not in 

number but in a thought experiment.  It goes like this: 

Imagine that nothing exists except pure space within which a single object is created - the ‘first’ 

point. The first point is of arbitrary size (dimensionless) and we likely imagine a spherical object.  

The key characteristic here is that it is distinct from and bounded within the containing space 

which is unbounded and not containable.   

We extrapolate that where there is room for the first object in unbounded space there is room for 

another to exist. The only possible next action in this context is that a second object is created in 

the exact likeness of the first object because that is all that is known. (This is a core postulate 

that implies uniform spatial equilibrium in the growth of points.) The two objects, however, must 

be distinct; else they would occupy the same space and not be distinguishable.  As such, the two 

objects find themselves simultaneously connected and separated in an equilibrium of attraction 

and repulsion. We might say that the forces of gravity (centripetal) and radiance (centrifugal) are 

at play here. The two objects and the equilibrium (i.e., state of balance) of forces between them 

define a line in space - the first dimension.  This line is the base dimension from which all other 

lines will be understood – it is called ‘unit length'. 

 

Figure A1: Line Segment of ‘unit-length’ formed by two points in space. 

In the historical context, a line of unit-length is the basis of the ‘Vesica Pisces’ diagram shown in 

Figure A2. 
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Figure A2: Vesica Pisces and an Example of Derived Rectangles 

In the Vesica Pisces a circle of unit-length radius surrounds both the first and second points.  The 

circle represents the identity of the object in terms of its force ‘radiating’ out omnidirectionally 

in two dimensions (i.e., its radius), as well as its force of attraction.  Ancient geometers derived 

several important proportions from this pattern: √2, √3 and √5 relative to unit-length (1).  These 

proportions were used to create sacred rectangles which served as aesthetic design frameworks in 

Egyptian, Greek, and other ancient art and architecture.  An arbitrary rectangle composition 

based on √3 is shown on the right.  It represents a harmonized set of proportions to guide 

aesthetic design. 

As we continue the creation sequence and add more and more points, each one held in place at 

unit-length from adjacent points in a plane, we arrive at the ‘Flower of Life’ pattern shown in 

Figure A3.  This beautifully interconnected pattern shows how an infinite cascade of point 

replications can fill our two-dimensional space. 

 

Figure A3: Flower of Life 
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But simply extrapolating the creation sequence in two dimensions, as the Flower of Life does, is 

a digression from the journey.  In reality, objects (i.e., points) will replicate and come into spatial 

equilibrium in three dimensions, not just two.  While our third replicated point would arrange 

itself to define a plane that includes the first two points, our fourth point would come into unit-

length equilibrium at a right angle off of that established plane forming the Tetrahedron as 

shown in Figure A4.   The Tetrahedron is the most basic 3D form. Its four points are in perfect 

spatial equilibrium at unit-length distance from each other.   

 

Figure A4: Tetrahedron – Four Points in Spatial Equilibrium 

Thus far we can easily visualize this pattern of points in our imagination but to study how this 

equilibrium of four identical points, the Tetrahedron, can grow in space we must augment our 

thought experiment with 3D skeletal geometric modeling tools. As we proceed, we will refer to 

these forms by classical Platonic names, but we will not necessarily view them from a classical 

‘solids’ perspective.  In fact, we must be very careful to not taint our exploratory perspective 

with the classical perspective.   

It is also important to remember that, in node-and-strut modeling, the node patterns and spatial 

relationships are the most important.  The struts are the physical scaffolding that pull the nodes 

into patterns of interest per our requirement of equality of force / unit-length distance.  So, while 

both nodes and struts make for beautiful imagery, the node patterns are more germane to our 

thinking about spatial form.  Struts, per se, are like ‘visual force traces’ that enhance pattern 

viewing and understanding. 

Continuing, we can add a new point off of each of the faces of the Tetrahedron and still maintain 

the unit-length equilibrium of forces. This results in the Stellated Tetrahedron form of Figure A5.   



Patterns and Notions - The Joy of Qualitative Geometry Study Page 8 
 

 

Figure A5: Stellated Tetrahedron 

But after this we can no longer add points off the faces and maintain coherent unit-length 

equilibrium of points. This is demonstrated in Figure A6. While a new point, as represented by 

the Tetrahedron in gray, can equalize off the face of the yellow Tetrahedron, it cannot equalize 

with the point of the Tetrahedron in green.  The node distance, as shown by the red line, is 

greater than unit-length.  We appear to have hit a dead-end. 

 

Figure A6: Tetrahedral Buildout Dead-end 

But there is more to notice about the equilibrium of four points of our initial Tetrahedron. We 

observe that each node is perpendicular to the mid-point of the opposing Triangle plane.  We 

also notice that each edge, represented by the white struts in Figure A7, is perpendicular (or 

orthogonal) to the edge opposite it.   
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Figure A7: Opposing Edges of Tetrahedron are at 90º Rotation 

If we were to connect the mid-points of these two lines as shown by the red line in Figure A7 and 

look straight down the red line the pattern of points would appear as a perpendicular cross as 

shown in Figure A8. 

 

Figure A8:  View of Tetrahedron nodes looking from mid-point of one line to its opposite 

This pattern is the first signature of our initial assumption, that all points have the same power of 

attraction and radiance and thus coalesce into an equal distance of separation.  

(If we were to assume that any arbitrary point can have any arbitrary size/power, then coherency 

of spatial patterning would go ‘out the window’.) 

There are three pairs of opposing struts in the Tetrahedron therefore three orthogonal axes (and 

planes) are present as shown in red in Figure A10. 
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Figure A10: Orthogonal Axes of the Tetrahedron 

In this we can we appreciate how our 3D Cartesian axes system is intrinsic to the uniform 

Tetrahedron equilibrium, but even more importantly, this spatial relationship foreshadows the 

emergence of the ‘Square’ and the ability of Nature to fill space. Let’s continue to add more 

points but now in a different manner. Instead of adding points that equalize relative to form 

‘faces’ we add points to form lines. 

In Figure B1 two Tetrahedrons are oriented such that an edge (strut) of each form is linearly 

aligned.  This is highlighted by the white line at the top where three points form a straight line of 

two unit-lengths.  Linear orientation of points2 is a major leap from our initial building heuristic 

of simply equalizing a new point off an existing face, which we have observed is a dead-end for 

form growth.  When incorporating linear orienting in our building approach, we find that two 

Tetrahedrons create a Pyramid form, and here (to thunderous applause) we have the grand 

premier emergence of the ‘Square’ (highlighted in red in Figure B1).  

 
2 In mathematics two points define a conceptual line.  In 3D Geometry, however, we find that a functional line is 

really determined by three points, for, there is one, and only one, alignment of three points in 3D space that creates a 

straight line.  
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Figure B1:  Linearly Arranged Tetrahedrons Creating Pyramid (Octahedron) 

This exciting observation bears restating:  At first blush we all probably think of the Tetrahedron 

as a pointy triangular object. But intrinsic to the unit-length equilibrium of four points that 

creates the Tetrahedron are three pairs of equal and orthogonal opposing edges (like the pair 

highlighted in white in Figure B2). This crisscross of point pairs is the predecessor of the Square 

pattern that emerges in subsequent buildout.  In retrospect we can now recognize that the Square 

pattern is latent (hidden) in the Cross, and the Cross pattern is latent (hidden) in the premise of 

uniform separation of the four points of the Tetrahedron. 

 

 

Figure B2: The Orthogonality of the Tetrahedron 

Adding two more Tetrahedrons, for a total of four, results in a fully formed Octahedron shown in 

Figure B3.  On the left the upper Tetrahedrons are aligned in parallel to the lower set.  On the 

right the upper Tetrahedrons are aligned orthogonal to the lower set. 
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Figure B3: Four Tetrahedrons forming an Octahedron 

Figure B4 shows eight Tetrahedron fully enclosed to form the Octahedron at center. 

 

Figure B4:  Eight Tetrahedrons forming the Octahedron (Stella Octangula) 

In the classical perspective, this form is recognized as a standalone object called the Stellated 

Octahedron (‘Stella Octangula’ per Kepler).  However, from the perspective of our ‘patterns-in-

growth’ study, it is a form that teaches us how a cluster of eight Tetrahedrons in 3D space creates 

the pattern of the Octahedron, hence the Square.  (The eight outer nodes of the Tetrahedrons 

form a √2 Cube. More on that later.) 

An important observation here is that, in 3D form growth, unit-length Squares are created from 

unit-length Triangles by a force balancing dynamic that results in a linear alignment of three 

points, at unit-length separation.  When we extrapolate to point forces balancing in three 

dimensions, the result is the orthogonal arrangement of unit lines visualized (in a perspective 

view) in Figure B5.  Considering our first point at center, six other points (of equal force) 

equalize by extent (distance) from the center point and by extent from their four closet neighbors 

in an equilibrium of direction.  As more points are added this equilibrium produces a cubic 

lattice. 
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Figure B5: Equilibrium of Extent and Direction 

 

Triangle and Square are thus, not two independent forms, but simply different ‘aspects’ of point 

equilibrium. Triangle and Square are Nature’s simple and elegant principle behind a vast 

diversity of complex physical form.  In this we recognize a fundamental and powerful patterning 

notion – the notion of ‘Duality’3. We will continue see this notion at play in our buildout of 

points.   

Triangle and Square Buildouts 

Let’s continue exploring using the set of the simplest compositions of 3D form, comprised solely 

of unit-length Triangles and/or Squares, as a starting base.  Referred to as the ‘Base Forms’ they 

are shown in Figure C1.  We refer to them by classical Platonic names but, again, we are being 

careful to not view them from a classical ‘solids’ perspective. 

 
3 The notion of Duality here is not to be confused with the notion of Duals in classical solid geometry whereby a dual 
solid is created out of an existing solid by transforming its vertices into faces and faces into vertices. 
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Figure C1: Base Forms of Triangle and/or Square 

Of the Base Forms there are ‘heterogeneous’ forms, the Octahedron (and Pyramid) and Prism, 

composed of both Triangle AND Square patterns, and ‘homogeneous’ forms, the Tetrahedron, 

Cube and Icosahedron, composed of only Triangle OR Square patterns.  

Each tells a story in growth: 

Tetrahedron Buildout 

As we saw above an omnidirectional buildout of Tetrahedrons off its faces quickly reaches a 

dead-end.  But, as we will see later, Tetrahedrons can be linearly aligned off its faces to create an 

infinitely long linear tube comprised solely of Triangle faces.  When the Tetrahedron is aligned 
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linearly along its edges it derives Octahedron patterns.  These patterns complement each other to 

allow for infinite growth as a Tetrahedral-Octahedral Lattice4.   

Cube Buildout 

It is easy to imagine omnidirectional buildouts of Cubes.  It results in either a larger cube or 

variations of rectangular boxes.  We witness cubic buildout every day in the myriad shapes of 

our buildings, living spaces, cabinets, boxes, etc. Variation is possible in the sense of branches 

that travel out and along any of three orthogonal axes of the Cube faces, or by interfacing with 

the square faces of a Prism to fork it.  Such branches can intersect with other branches to create 

infinite variations.  Compared to the heterogeneous Triangle-Square Lattice networks (i.e., the 

Tetrahedral-Octahedral Lattice), a unit-length Cubic Lattice is not a stable structure, as only 

‘triangulated’ node arrangements are truly stable.  However, as will be discussed later, √2 Cubes 

are inherent to the Tetrahedral-Octahedral Lattice, and thus are stable. A √2 Cubic Lattice is an 

aspect of the Tetrahedral-Octahedral Lattice.  

Prism Buildout 

The Prism is a heterogeneous form that can multiply coherently around one axis of the square 

facet to form a hexagonal prism and then can grow infinitely long along that same axis. Multiple 

hexagonal prisms can be stacked in an infinite honey-comb pattern, but the Prism form by itself 

has diminished power for variation in growth. We will not explore Prism buildout in this essay. 

Octahedron Buildout 

As seen above the Octahedron is a child of Tetrahedrons. Perspective is, once again, important as 

the Octahedron form can be recognized in multiple ways. In the classical ‘solids’ view it is seen 

as the formation of eight equilateral unit-length triangle faces.  In the ‘skeletal’ view we can see 

it as one square and eight triangles (or two mated Pyramids with a square bottom and four 

triangular sides). Another perspective is to see it as three Squares that intersect as orthogonal 

3D planes as shown in Figure C2 where one square is White, one Red and one is Red-White 

Dashes. 

 

 

 

 
4 This lattice pattern was used by Alexander Graham Bell in his large truss-works, i.e., spaceframes.  It was called 
the ‘Octet Truss’ by Buckminster Fuller. 
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Figure C2: Octahedron as Three Orthogonal Squares 

Let’s explore an Octahedron buildout relative to its Square plane and its Triangle plane. In 

Figure C3 is a buildout on the plane of its Triangle faces.  As can be seen the growth results in a 

larger Tetrahedron. Each face of the larger Tetrahedron is a plane of Triangles (the ‘Flower of 

Life’ pattern).   

 

Figure C3: Tetrahedron Comprised of Octahedrons and Tetrahedrons 
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If we build out along the plane of its Square face it grows into a larger Octahedron as shown in 

Figure C4.   

 

Figure C4:  Octahedron comprised of Octahedrons and Tetrahedrons 

These two buildouts reveal the power of the Triangle and Square to grow and fill space as 

intersecting planes - a ‘mineral-like’ growth.  It grows as an Octahedron when building from the 

plane of the Squares and grows as a Tetrahedron when building from the plane of its Triangles.  

In either case, it is the same form, referred to in classical geometry study as the Tetrahedral-

Octahedral Lattice.  As we will see later, in Figure C9, it is just a matter of which sub-form (or 

aspect) you select to view.   

In the Tetrahedral-Octahedral Lattice there are eight planes of Triangles (per Figure P1) 

intersecting with three planes of Squares (per Figure P2).   Parallel planes of Squares intersect 

orthogonally like the Squares of Figure C2.  Parallel planes of Triangles follow the eight faces of 

any given Octahedron in the lattice.  The lattice can grow infinitely large.  

Vector Equilibrium  

A study of Octahedrons would not be complete without an exploration of the Cuboctahedron, 

also called the ‘Vector Equilibrium’ (VE) by Buckminster Fuller.  It is shown in Figure C5. 
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Figure C5:  Vector Equilibrium – Cuboctahedron 

As a standalone form the VE is symmetrical across reflections of four Hexagon planes, formed 

by six unit-length Triangles as shown in Figure C6.  You can see the four Hexagon planes of the 

VE in Figure C5. They are highlighted in red, yellow, blue and green at their perimeters. The 

Hexagon planes intersect at their center.  

In classical characterization the VE is described as having eight Triangles and six Squares for a 

total of fourteen outer faces.  Each edge of the six Squares of the VE is one strut of the perimeter 

edge of the Hexagon planes. It can be decomposed into eight Tetrahedrons and six Pyramids. 

 

Figure C6: One of four Hexagon Planes of the VE 
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But on further examination we see that the VE is just a sub-form within the 

Tetrahedron/Octahedron Lattice pattern shown in Figures C3 and C4.  The VE is latent in the 

Lattice pattern and emerges when the Lattice has an edge of at least three unit-lengths as shown 

in Figure C7.  The form on the right shows the VE sub-form highlighted with yellow lines. A 

portion of the VE is on the other side of the red Hexagon plane. The vector lengths are one unit-

length.  However, if one were to continue building out the Pyramid, at a certain size (i.e., node 

count) a larger VE form would emerge with vector lengths greater than one unit-length. 

 

Figure C7: VE Inside the Pyramid 

Whereas the Pyramid form does not have a center of balance, the VE as a stand-alone form does.  

Its center node is unit-length distance to all nodes in the outer layer and all nodes in the outer 

layer are unit-length Triangles and Squares. Indeed, it is because all the struts are unit-length that 

it is called the ‘Vector Equilibrium’, and in this characteristic, we may recognize the VE as the 

second manifestation of point equilibrium after the Tetrahedron.   

 

Figure C8: Unit-length Triangles and Squares and Interior Struts of the VE 



Patterns and Notions - The Joy of Qualitative Geometry Study Page 20 
 

Recall that in the Tetrahedron we spied the precursor of the Square in the orthogonally opposing 

edges.  A linear aligning of Tetrahedrons created the Octahedron and the emergence of the 

Square.  Further growth in planar orientation revealed the potential for infinitely large Lattices 

comprised of Tetrahedrons and Octahedrons.  Fundamental to Lattice growth is the repetition of 

Triangle and Square patterns. The VE is the simplest distillation of the harmony of Triangle and 

Square in three dimensions. It is the very essence of the Lattice pattern. 

In form growth starting from our first four imagined points in space, Figure C9 shows how all 

these patterns are interwoven.   

 

Figure C9:  Tetrahedral-Octahedral Lattice with VE aspect highlighted 

Tetrahedron growth is in White.  The two lines in green are the orthogonal edges of the 

Tetrahedron.  Highlighted within the lattice is a Pyramid form in red and a VE instance in blue.  

All of these forms can be seen (and in classical geometry are seen) as standalone forms, but it is 
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more accurate I think, to see them simply as ‘aspects’ of Tetrahedral-Octahedral Lattice 

structure. 

At this stage of buildout, we again witness the alignment of the form to the three orthogonal 

(Cartesian) axes.  In the Tetrahedron of Figure A10 they are formed by lines going through the 

mid-points of opposing edges. In an Octahedron, they are formed by lines passing through 

opposing nodes. In VE sub-form there are three pairs of opposing square faces, highlighted in 

yellow in Figure C10.  Lines passing through the mid-points of the opposing square faces, shown 

in red in Figure C10, intersect at the center node of the VE and create three orthogonal axes.   

Thus far in 3D growth, orthogonality has morphed from line to node to face.  

 

 
 

Figure C10: Orthogonal Square Faces of VE 

 

The Icosahedron 

There is much more to the Icosahedron than the twelve nodes and twenty triangular faces that its 

classical name implies.  

As standalone forms both the VE and the Icosahedron have an outer layer of twelve nodes 

arrayed around a center point.  However, they are fundamentally different forms. From a center 

node, the VE grows as a lattice to form an outer layer of twelve nodes, all at unit-length from the 

center node. In the Icosahedron, we have a constellation of twelve nodes that are unit-length 

distance from each other and balanced around a center but are not built out from a center node.  

We must consider the Icosahedron a distinct spatial intelligence – a ‘Cage’.  

At first blush it appears that the center of the Icosahedron is unit-length distance to the twelve 

outer nodes and thus the Icosahedron can be derived from twenty regular Tetrahedrons, but this 
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is not the case as the distance from the center to any point in the Icosahedron cage is slightly less 

than unit-length. This is explained in more detail in Appendix A: ‘Whole Number Dilemma’.   

But all is not lost for whole number relationships. In progressive buildout from the Icosahedron 

the notion of unit-length Triangle and Square is still at play. Form growth that is balanced around 

a center is indeed whole number coherent - let’s explore. 

Buildouts thus far have been linear (and by extension planar) as exhibited in Tetrahedral and 

Octahedral growth (Cubic and Prism as well).  New nodes are simply added at unit-length along 

a linear path. There is no omnidirectional balance to Lattice growth. We see evidence of such 

Lattice growth in crystals and minerals. 

With the Icosahedron, a new and distinct spatial intelligence is demonstrated, one that is 

perfectly balanced around a center, sphere-like.  In the forming of an Icosahedron we discover 

the next great notion - that of ‘Enfolding’.  The intelligence that folds a set of points perfectly 

balanced around a center is fundamentally different from the intelligence that creates Lattices. 

(Intuitively, it seems to be a more sophisticated dynamic.)  Intelligence that folds around a center 

in a perfectly balanced manner also suggests a capacity for omni-directional spin. 

Figure D1 shows the formation of an Icosahedron via an enfolding process starting from five 

triangles in the upper left figure and continuing clockwise: 

 

Figure D1: Points Enfolding into an Icosahedron 
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The completely formed Icosahedron, shown in Figure D2, is the starting point of continued 

exploration.   

 

Figure D2: Icosahedron  

 

Icosahedron Cages 

Growth from the Icosahedron occurs in discrete layers - layers of concentric cages that are unit-

length coherent at their faces. At each layer, the cage has more nodes and is spatially larger, yet 

each cage will always contain twelve, and only twelve, Pentagon faces.  The increasing nodes 

count results from different patterns of unit-length Triangles or combinations of Triangle and 

Square faces filling in the area between the Pentagons.   

Per the analysis in ‘Appendix A’ we see that the distance between successive cages is slightly 

less than unit-length. To continue to model Icosahedral buildout, we use a ‘Compensating’ 

modeling tool that allows us to form slightly ‘squashed’, (i.e., non-equilateral), Tetrahedral and 

Octahedral patterns between layers. This is a practical trick that helps us to find the defining 

pattern of the next cage layer.   

First Cage Layer 

The first cage layer that comes into unit-length equilibrium around the Icosahedron is shown in 

red in Figure D3. The first cage layer is comprised of twenty unit-length Triangle faces and 

twelve unit-length Pentagon faces.  The starting Icosahedron in the center is highlighted in blue. 
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Figure D3: Model of First Cage Layer5  

In Figure D4 the face pattern of the first cage is isolated by highlighting. A Pentagon face, one of 

twelve, is highlighted in yellow. It is surrounded by a pattern of five Triangles, highlighted in 

red. This is the face pattern of the Icosidodecahedron, an Archimedean solid.   

It can also be appreciated that the line that runs along of each edge of the Pentagons form a 

‘great circle’ whose plane runs through the center of the form. 

 

Figure D4:  The Defining Pattern of First Layer Cage  

 
5 The white interstitial struts in Figure D3 are all equal length but slightly less than unit-length. As such, the entire 

model can be considered uniform but not regular. For purposes of modeling they serve as scaffolding that allows us 

to build outward to reveal the next cage pattern, which is regular. 
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In the first cage layer around the Icosahedron at center, we observe the emergence of twelve 

distinct Pentagon faces. An important observation here is that Triangles alone, in a convex 

configuration, can create Pentagons. A direct progression from 3 to 5.  

If we take another look at the starting Icosahedron at center, we can see the genesis of those 

twelve Pentagons -- they are subtly enmeshed in the Icosahedron.  In Figure D5 a subset of three 

of the twelve Pentagons is highlighted - one in red, one in green and one in dashed-red.  Just as 

we shifted our perspective to see the Octahedron, not as a set of Triangle faces but, as a set of 

orthogonal Squares, we can shift our perspective here, as well, and see the Icosahedron, not as a 

set of twenty Triangle faces but, as an enmeshed set of twelve Pentangles that in form growth 

(expansion) emerge as distinct Pentagon faces. The Pentagon is the ‘signature’ of the 

Icosahedron. 

 

Figure D5: Enmeshed Pentagons of the Icosahedron 

At this point we might pause and appreciate that the requirements to achieve omnidirectional 

coherency, as with Icosahedral growth, are more complex than for the linear/planar growth of 

Lattices.  Growth outward from a center diverges in space whereas planar growth is spatially 

constant.  Lattice growth is a regular pattern of unit-length Triangles and Squares. By contrast, in 

Icosahedron growth, unit-length coherency is only found at the faces of a given cage layer.    

Now that we have seen the first Icosahedron cage and the emergence of the Pentagon faces, we 

might wonder if there is a more direct way to derive the Pentagon.  After all, we have seen how 

the Triangle (3) of the Tetrahedron, when linearly oriented, creates the Square (4) of the 

Octahedron. Is it possible then that there is simple progression of ‘3 creating 4 creating 5’ as a 

Lattice?  In Figure D6 we perform a quick visual test of this premise. 
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Figure D6: Octahedral Pyramids Do Not Create the Pentagon 

Here a series of half-Octahedrons (i.e., Pyramids), composed of Triangle and Square, comes very 

close to encircling itself to create two Pentagons. But as can be seen by the highlighted red lines 

in the bottom Pyramid the gap is greater than unit-length, the pattern does not close, thus a 

Lattice progression is not possible. 

Second Cage Layer 

Continued buildout brings us the model shown on the left in Figure E1. The cage pattern is 

shown isolated on the right, it is the face pattern of the Archimedean Rhombicosidodecahedron 

solid. 
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Figure E1 – Icosahedral model buildout 

highlighting the 2nd Cage layer. 

 

 
 

The 2nd Icosahedral Cage layer isolated.  

The 2nd cage’s ‘facet pattern’ is isolated by color highlight in both images. There are five 

Squares shown in red, five Triangles shown in blue, creating the Pentagon shown in yellow. This 

is the face pattern of the Archimedean solid called the Rhombicosidodecahedron. But viewing 

this pattern through the lens of classical classification hides a rich significance, for here we may 

see this form as the dynamic of Triangle and Square creating the Pentagon. This is another 

important glimpse into the spatial intelligence of Nature.  Recall in Figure B1 we observed, that 

when three nodes of two Tetrahedrons were arranged linearly, Triangles created the Square. 

Here, Triangle and Square, arranged in a convex pattern, create the Pentagon.  An elegant 

progression of Triangle→Square→Pentagon (i.e., 3→4→5). 

Figure E2 is a clear visualization of the Icosahedral expansion sequence thus far. 
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Figure E2: Icosahedral Expansion Sequence 

At center in Blue is the initial Icosahedron.  Expanding out we encounter, in Red, the 1st cage 

layer that has the face pattern of the Archimedean Icosidodecahedron solid. Expanding out again, 

we encounter, in White, the 2nd cage layer, that has the face pattern of the Archimedean 

Rhombicosidodecahedron solid. Twelve Pentagon facets in each layer are aligned along six axes 

emanating out from the center of the initial Icosahedron.  Notice that in the first expansion from 

the Icosahedron to the first cage (from blue to red), the Pentagons are mated at each of their 

vertices.  In the second expansion (from red to white), the Pentagons are mated at each of their 

edges. 

The expansion continues with further buildout.  
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Third Cage Layer 

With continued buildout the pattern of the third Icosahedral cage is revealed in Figure E4, 

highlighted in red.  It is the Dodecahedron with edges of two unit-lengths. We can appreciate 

here that the Dodecahedron is a derivative of the Icosahedron, i.e., not a standalone Platonic 

form but an instance of Icosahedral growth.  

 

Figure E4: Cage Layer Three – Emergence of the Dodecahedron  

Note the unit-length Pentagon, highlighted in green, projecting out from the center.  This is one 

of twelve ever-present Pentagon faces of Icosahedral growth. Each side of the unit-length 

Pentagon has three Triangles that create the two unit-length edges of the Dodecahedron.   

A similar pattern of three Triangles surrounding a unit Pentagon is found in the Snub 

Dodecahedron, an Archimedean Solid.  However, the Snub Dodecahedron has only one row of 

Triangle separating the Pentagons, whereas here in Figure E4, there are two rows of Triangles, 

forming a slight folded Hexagon, separating the Pentagons. The ‘fold’ of the Hexagon forms one 

edge of the two-unit Pentagon, that in turn, form the cage of the Dodecahedron.   

In Figure E4 you can also see that the unit Pentagon face, in green, is not on the same facet plane 

as the two-unit-length Pentagon in red. As such it is not a ‘convex solid’ like all Archimedean 

solids are.  The two-unit Dodecahedron of Figure E4 is found in the concave trenches that 

surround the twelve unit-length Pentagons.  The overall form, viewed as a solid, is like the non-

convex Truncated Small Stellated Dodecahedron6. 

 
6 The two unit-length Dodecahedron does not occur at the outer layer of the buildout like all the other cages do. 
Nevertheless, the underlying structure in the buildout creates linearly aligned edges of two unit-length, in the form 
of a Dodecahedron. 
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Fourth Cage Layer 

The pattern of fourth cage is the ‘Bucky Ball’, highlighted in red in the model of Figures E5. 

You will no doubt recognize this pattern in the typical soccer ball.  In Solid Geometry it is a 

Truncated Icosahedron.   

 

Figure E5: Fourth Cage Layer – The Bucky Ball 

Like the form of Figure E4, each of the twelve unit-length Pentagon faces is surrounded by five 

Hexagon faces that, unlike Figure E4, are not folded and lay on the same facet plane as the 

Pentagon.  In this sense the cages of Figures E4 and E5 are close cousins. 

Characteristics of Icosahedral Cages 

In the Icosahedral cage patterns that we have observed, the twelve Pentagons enmeshed in the 

starting Icosahedron at center expand and project outward along six axes.  This was emphasized 

by the green Pentagon in Figure E4.  This outward projection of twelve Pentagon faces at each 

layer of growth is a constant.  That which changes at each cage layer is the pattern of Triangles 

or Triangle-and-Square combinations that fill the area between the Pentagons. Figure E6 shows 

the cage patterns of the first four cages of buildout from an Icosahedron at center.  Each cage 

layer will have twelve such convex patterns inter-meshed.  Each layer becomes more sphere-like 

as it grows and though the volume of the cage at each successive layer is larger, the struts of the 

cage faces are always unit-length; there are just more of them at each progressive layer.7  

 
7 We can see the general pattern of Icosahedral growth, consisting of twelve Pentagon faces within an ever-
enlarging sea of Hexagons (Triangles), in Geodesic domes.  A sea of Hexagons by themselves would form a flat 
plane.  The Pentagons work to enfold to form.  Geodesic Dome designs vary, most are based on the Icosahedron, 
though the facets are not necessarily equilateral.   
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Figure E6:  Defining Face Patterns of the Icosahedral Cages 

(Although the Pentagons in the diagrams of Figure E6 appear to be of different size they are all 

the same size – unit-length.) 

In Icosahedral buildout we observe successively larger Pentagon patterns emerging at each cage 

layer. Examples of repeating Pentagon patterns, the signature of the Icosahedron, are highlighted 

in red in Figure E7.   
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Figure E7:  Successive Pentagons Emerging at each Cage of Icosahedron Buildout 

At center, we can see the Pentagon of the inner Icosahedron with edges of unit-length, then a 

Pentagon of two unit-length and, at the outermost, a Pentagon of four unit-length. We also see 

this phenomenon in the Pentagons in Figure E4.  Likewise, in the Lattice buildouts of Figures C3 

and C4 we observe successively larger Tetrahedrons and Octahedrons appearing at each layer of 

planar growth.  In these observations, we witness another fundamental and important notion -- 

‘Self-Similarity’, the notion of a pattern repeating itself at different levels of manifest growth.  

Synonyms for this notion, as it relates to the physicalizing process of nature, are ‘Fractal’, ‘A 

correspondence of resemblance from inner to outer’, as well as the old favorite, ‘As Above, 

So Below’.   

Self-Similarity does not mean strict pattern exactness at every level of growth.  But, as 

everything at the surface of the physical world is a geometric form (“God geometrizes 

continually” - Plato), everything can be understood as a chain of geometric patterns, guided by 

fundamental patterning notions found in any given portion of that chain. A simplistic example of 

Self-Similarity is where in the architecture of a brick building, we can still recognize the form of 

the brick that it is built with.   

(Additional thoughts on Self-Similarity are presented in Appendix B. 

Convex Facets 
Inspired by the beautiful convex facet pattern of the second Icosahedral Cage of Figure E2 (i.e., 

the Rhombicosidodecahedron), this section explores all convex node patterns (i.e., dome-like 

facets) comprised of Triangle and Square at the outer edge. The set of all possible regular facets 

are those with a Triangle, Square, Pentagon and Hexagon at center as shown in Figure E9.  
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Figure E9: Convex Face Patterns of 3-4-5-6 

What all these facet patterns have in common is that the unit-length Triangles and Squares that 

surround the center shape create a set of outside nodes that all lie on a plane, i.e., the outer edge 

lies flat.  

The facet at the bottom with the Triangle at center is a six-sided plane.  Moving clockwise 

around the Square is an eight-sided plane, around the Pentagon is a ten-sided plane, and around 

the Hexagon is a twelve-sided plane.  The Triangle-centered pattern, at the bottom, is the most 

convex form.  As we progress to Square and Pentagon the overall pattern becomes shallower 

ending with the Hexagon-centered pattern that is perfectly flat. We thus observe that only three 

of these facets, when fully inter-connected, creates a Cage.  The Hexagon-centered pattern 

cannot. Beyond the Hexagon-centered pattern, no facet pattern comprised of Triangle and Square 

is possible.   

When we mate convex facets of Triangle, Square and Pentagon we get Cages. Mating two of the 

Triangle-at-Center facets we get the outer form of the Cuboctahedron shown in Figure E10.   
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Figure E10: Mated Facets of Triangle-at-Center (Cuboctahedron) 

Mating twelve Pentagon-at-Center convex patterns we get the second Icosahedral cage, the 

Rhombicosidodecahedron, seen earlier in Figure E2 and repeated below in Figure E11. It is 

composed of twelve of these patterns inter-meshed.   

 

Figure E11: Mated Pentagon-at-Center Facets 

 

Lastly, in Figure E12 we see three orientations of the Square-at-Center convex facets creating a 

cage.  The middle form is the Archimedean ‘Rhombicuboctahedron’.   

   
 

Figure E12: Cage Variations of the Square Convex Pattern 

 

Figures E10 and E12 show us that it is not only the Icosahedron (Pentagon) that produces a cage.  

In fact, the node pattern of any given polyhedron form can be considered a cage.  However, some 

cages are dead-ends that will not allow further buildout to create a successively larger cages with 

unit-length coherency (i.e., Triangle and Square), as the Icosahedral cages do.  For example, the 
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Stellated Dodecahedron in Figure E13 will not allow further unit-length buildout.  In this sense, 

all stellated forms are dead ends.   

 

 
Figure E13: Stellated Dodecahedron 

 
 

Tubes 

The ‘Enfolding’ principle that produces the omnidirectional Icosahedron can also fold along a 

linear axis to produce an Icosahedral ‘Tube’ shown in Figure F18.  This tube consists of unit-

length Triangles that travel along a linear axis and intersect to create a series of Pentangles that 

are perpendicular to the line of travel. Seen from the end, the profile of this tube is the Pentagon.  

 

Figure F1: Icosahedral Tube 

Tubes suggest again the notion of ‘linearity’, i.e., a travel of points along a straight line. By 

contrast, Icosahedron cages suggest the notion of enfolding around a center. In growth, cages 

 
8 Tubes may also be referred to as Prisms or Anti-Prisms.   
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become more sphere-like at each level, tubes simply get infinitely longer as they travel along an 

axis. 

It should be appreciated that Icosahedral tubes can intersect with Icosahedral cages to form 

complex combinations of polyhedral nodes with tubes as branches.  Figure F2 models an 

Icosahedral tube intersecting with an Icosahedral cage.  Here, it is as if the tube travels through 

the cage. 

 

Figure F2:  Linear and Spherical Growth of Icosahedron 

We observe that opposing nodes of the Icosahedron create lines through the virtual center that 

represent axes of potential linear growth.  The axes emanate outward omni-directionally from the 

center and diverge in space.  The red line in Figure F3 shows just one of six axes going through 

the virtual center in yellow. 

 

Figure F3: Axis of the Icosahedron 

Figure F4 shows all six axes (or twelve rays) in red emanating out from an Icosahedron at center.  

Icosahedral Linear Tubes can travel along these axes. (One axis cannot be seen because it is 

coming straight out at you.) 
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Figure F4:  Six Axes of the Icosahedron 

With the Linear Tube Notion in mind, we can now appreciate other tube profiles.  As seen earlier 

in Figure A6, the Tetrahedron cannot fill space omni-directionally off its faces, however, it can 

grow linearly along its faces as a twisting tube, the Tetrahelix, shown in Figure F5.  The twist is 

highlighted by the red, green and blue struts. At first blush it appears that the form spirals as it 

grows but its growth is straight and perfectly balanced around a centerline inside the tube.  It is 

comprised solely of Triangles. Its profile is the Triangle. 

 

Figure F5: Tetrahedral Tube (Tetrahelix) 

The tube of Figure F6 has a profile of the Square. Squares, shown in gray, rotate 90º at each 

successive layer of travel.  
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Figure F6: Tube of Square Profile 

We’ve already seen the Pentagon tube in Figure F1. Figure F7 shows a series of tubes with 

profiles of six, seven and eight. 
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Figure F7: Tubes with Profiles of Six, Seven and Eight Respectively 

Any profile number is possible. With each increase in the value of the profile the tube wall 

becomes less convex. As the profile approaches infinity, the wall pattern approaches the flat 2D 

‘Flower of Life’ pattern.  Amazingly, the inter-meshed patterns of Triangles can articulate to any 

degree of curvature. 

Though not modeled, it should be noted that Square prisms can be constructed but would not be 

stable. Whereas Triangle-based tubes have a ‘spiraling’ travel of inter-meshed nodes, nodes of a 

Square-based tube would form straight lines parallel to the direction of tube travel and 

orthogonal to the plane of the tube profile.  Whereas the Triangle tube possesses strength in 

terms of both tension and compression between all nodes, the Square tube does not. This 

weakness probably makes this tube form impossible in Nature.   

Triangle-based tubes can be thought of as a parallel set of nodes in the form of a Spiral. 

As we end our discussion of Tubes, consider that the Tube forms above have Triangle faces and 

varying end profiles, Lattice forms have Triangle and Square faces, and Cage forms can have 
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Triangle, Square and Pentagon faces.  As such, off any given face of a Lattice or a Cage there is 

the opportunity for a Tube of the same profile to integrate into it and interconnect between 

multiple forms. Such interconnected forms are called labyrinths.  Figure F2 is an example of a 

tube intersecting with an Icosahedron-based form.   

Plane Wonders of Triangle and Square 
If we were to unfold all the tubes described above, they would flatten out into a 2D plane of unit 

triangles shown in Figure P1. 

 

Figure P1: Plane of Unit Triangles 

And important aspect of this 2D unit Triangle plane is the linearity of the nodes.  As can be seen, 

the node pattern comprises three sets of lines with a separation of 60º that can grow infinitely 

long.  In Figure P2 a 2D plane of Squares is shown. 
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  Figure P2: Plane of Unit Squares 

Here we see two sets of lines at a separation of 90º.  The common characteristic of infinite 

linearity allows these two planes types to mesh together and form 3D Lattices such as the 

Tetrahedral-Octahedral Lattice of Figure C9 (re-shown below).   

 

Figure C9 (copy) – The 3D Tetrahedral-Octahedral Lattice  
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Just as the lines of both homogeneous 2D planes can travel infinitely, the 3D Lattice of Figure 

C9 can grow infinitely large. 

Less obvious is a third plane pattern, a heterogeneous plane that contains both unit Triangle and 

Square as shown in Figure P3.  As it is so common to see just homogeneous Triangle or Square 

planes, it is almost magical when you realize that unit Triangle and Square can also mesh to form 

a 2D plane. 

 

Figure P3:  Plane of Triangle AND Square 

A basic axiom of analytical Geometry is that the angles around each node must add up to 360º. 

In Figure P1 the vertex angle of the 6-unit Triangles at each node is 60º, thus 6x60º = 360º. 

In Figure P2 the vertex angle of the 4 Squares around each node is 90º, thus 4x90º = 360º. 

In the heterogeneous plane of Figure P3 the angles around each node add up to 360º as well, 

either as (6x60º) or as (3x60º + 2x90º).  In the latter case there are two sub-patterns.  Figure P4 

shows the sub-pattern where the two Squares are separated by a Triangle.  This sub-pattern 

promotes circular growth, whereas the sub-pattern of Figure P5 promotes linear growth.  Both 

sub-patterns are found in Figure P3.  In all cases, the angles around every node of Figure P3 add 

up to 360º. 
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Figure P4:  Circular Sub-pattern of Hybrid Plane 

 

 

Figure P5: Linear Sub-pattern of Hybrid Plane 

The top portion of the plane of Figure P6 shows the linear growth pattern off the heterogeneous 

plane of Figure P3.  
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Figure P6: Linear Growth Pattern of Hybrid Plane 

By contrast a circular growth pattern is an infinite array of encircled hexagons, a set of three is 

shown here in Figure P7.   

 

Figure P7: Circular Growth Pattern of Hybrid Plane 
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Figure P8 is a playful mélange of planar Triangle-Square pattern. As the pattern grows, so does 

the scope of possible variation. 

  

Figure P8: Arbitrary Triangle and Square Planar Patterns 

 

In Figure P7 we observe recurring hexagon patterns.  Recalling our earlier discussion about the 

Vector Equilibrium (VE), we know that the VE is comprised of four hexagons, per Figure C6.  

As such, it is enticing to wonder if the hexagons of the heterogeneous plane may be VE forms in 

3D that somehow create a different Lattice pattern than the ‘linear’ Lattice pattern of Figure C9.  

An exploratory buildout in Figure P8 dispels this possibility. 
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Figure P9: Failure to Enclose a VE in the Hybrid Plane 

In Figure P9 a VE is built out of one of the hexagons which is then encircled by a combination of 

Triangles and Squares (lying flat).  An attempt to repeat the encircling of another hexagon in the 

VE is a failure, for as can be seen in Figure P8, at the point where the second encirclement meets 

the first encirclement, the nodes do NOT line up, i.e., a cleave plane does not exist.   In a 

successful mesh the two encircling planes would share nodes.  In this case the second plane can 

be seen to pass through the interstice between the nodes of the first plane.   

From this observation we can more fully appreciate that the possibility of infinite 3D Lattice 

growth is enabled by the infinite linearity that characterizes the node pattern of ‘homogeneous’ 

Triangle and Square 2D planes. Both homogeneous plane types have infinite extent of node 

linearity in common, they simply differ in the angles of their linearity.  The node pattern of the 

heterogeneous plane does not possess infinite linearity and thus cannot mesh into a 3D Lattice.  

For this same reason the heterogeneous plane also appears to not fold into a tube. 

 

 

The Lessons of Geometry 
Let’s summarize our journey thus far:  

We began with a thought experiment that worked with imagined points in space. Once beyond a 

few points it became difficult to mentally visualize point arrangements, so we augmented our 
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thought experiment with node-and-strut model building. Observations made in the progressive 

buildout of models led us to a more sophisticated understanding of Nature’s patterning tricks.  

A key premise of our thought experiment was that all points are equal in terms of force of 

attraction and repulsion, resulting in equal space between them, a line of unit-length distance.  As 

we added points the patterns grew volumetrically in three dimensions to create complex patterns 

of nodes that were relative to unit-length and regular. The first four points created the first 

regular 3D form, the Tetrahedron, where we observed that each pair of points forms an 

orthogonal ‘crisscross’ of unit-length lines with the other pair. In further buildout, this crisscross, 

through a force-balancing dynamic that linearized the points, surfaced the Square of the 

Octahedron. Here lay the nascency of the notion of ‘Duality’ of Triangle and Square, i.e., the 

notion that it takes Triangles and Squares to coherently fill 3D space, either as a Lattice or a 

Cage.  

In the buildout of Lattices, we observed Triangle and Square becoming intersecting planes of 

Triangles and Squares. In the Icosahedron we observed the ‘Enfolding’ principle that creates 

Icosahedral Cages - forms that expand out from a center point as a succession of unit-length 

cages comprised of Triangles, Squares and Pentagons, a center-balanced enfolding. We also 

observed nodes enfolding around a linear axis forming Tubes of infinite profile size and infinite 

length.  

We find that Icosahedral growth is fundamentally different than Lattice growth.  As a general 

observation, there are only two kinds of growth patterns – Linear (Planes, Lattices) and 

Enfolded (Cages, Tubes).  

In the broadest possible abstraction, an enfolded pattern is that which turns inward becoming 

distinct and particle-like with a center. A lattice is that which extends outward infinitely into 

dimensional space with no unique center. 

Throughout the progression of building from simple to complex we observed similar patterns of 

Triangle, Square and/or Pentagons repeating themselves at successive layers of growth.  This is 

the notion of Self-Similarity in Nature’s form making.   

The most potent observation, however, has to do with our initial premise: The implicit 

assumption that all points are equal in terms of their force of attraction and repulsion in 3D 

space. Without this assumption, we would be faced with an infinity of possible point strengths, 

resulting in an infinity of possible point separation distances, and thus an infinity of irregular 

form9.  It would be extremely difficult to comprehend 3D spatial patterning in this context.  

 
9 Fields of study that seek space-filling Geometries relax the requirement of equality to a small degree.  This results in 
finding practical space enclosures in building architecture. 
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However, there is just one, and only one, context where all point strengths are equal10, and in this 

context, we see that equality of point force implies the spatial equilibriums of extent (i.e., unit-

length distance of separation) and direction (i.e., orthogonality)11.  Thus, in the premise of point 

equality we find the most abstract definition of Duality: The unit-length Triangle is the spatial 

representation of the ‘idea of equalized extent’, the unit-length Square is the spatial 

representation of the ‘idea of equalized direction’12. 

Considering that the Square can be derived from the linear orientation of Tetrahedrons per Figure 

B1 (i.e., Triangles creating the Square), and that the Pentagon and Hexagon patterns can be 

derived from Triangle or Triangle-and-Square arrangements, we can appreciate then, that from 

the base premise of point equality flows all regular pattern. 

Seeing the Forest for the Trees 
Let’s return to model building but now with a focus on common assumptions and perceptions 

about physical form, and how model building can cast a new light on incumbent perceptions and 

assumptions and possibly shift our perspective. (per Prologue)  

In 3D modelling it is extremely important to be able to highlight specific node patterns within a 

large network of nodes because it is extremely easy to miss them.  In the Tetrahedral-Octahedral 

Lattice it is easy to spot the planes of Triangles and Squares, the Tetrahedrons and the 

Octahedrons. Those patterns seem to steal our attention to such an extent that we cannot see 

more complex sub-forms, i.e., node constellations, within the Lattice model. We noticed this 

‘hiding in plain sight’ phenomenon with the Cuboctahedron (VE) form in Figure C9.  It is not 

until you highlight specific strut patterns in a different color that the sub-form ‘pops out’ from 

the mesh.  Many sub-forms exist within the infinitely space-filling Tetrahedral-Octahedral 

Lattice. In modeling, as the Lattice grows, the number of nodes increases, and larger, more 

complex, sub-forms come into existence. That said, all sub-forms within the Lattice are 

connected and thus can also infinitely fill space. We should therefore recognize a given instance 

of a sub-form as simply an ‘aspect’ of the Tetrahedral-Octahedral Lattice.  

A significant sub-form hidden within the Tetrahedral-Octahedral Lattice is the √2-Cube. Figures 

Q1 and Q2 show a subset of Cubes (in red) in the form of three orthogonal branches of a √2 

Cubic Lattice. From this highlighting we can see that the √2 Cubic Lattice in red is really a ‘co-

 
10 We also find this notion in Arithmetic where there is the implicit assumption that the order of natural numbers is 

equally spaced.  That is, the difference between each number is identical throughout the entire number space.  There 

are no ‘privileged’ numbers. 

11 This is the essence of the term ‘Vector Equilibrium’. A vector comprehends both magnitude of distance and 
direction.  It should also be appreciated that these aspects correlate to the two ways that spheres can be packed, 
‘closest’ and ‘cubic’ packing. 
 
12 See Appendix C. 
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Lattice’ of the unit-length Tetrahedral-Octahedral Lattice in white.  A network of Tetrahedrons 

must come first to create the pattern of Octahedrons to then create the √2-Cubes.     

The highlighted models in Figures Q1 and Q2 make evident two significant aspects of the single 

Tetrahedral-Octahedral Lattice, a relationship that is exceedingly difficult to see in an un-

highlighted model. The red struts were not part of the original Tetrahedral-Octahedral Lattice 

model, they were added in afterwards to connect the diagonal nodes of the native Octahedrons.  

They show us how a latent node pattern, the √2 Cubic Lattice, so obvious once highlighted, can 

be ‘hidden in plain sight’ to our perception when not highlighted. 

 

 

Figure Q1:  √2 Cubic Lattice Aspect – Looking at Octahedron Edge 
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Figure Q2:  √2 Cubic Lattice Aspect – Looking at Octahedron Vertex13 

We alluded to the √2 Cube earlier in Figure B4 which shows a single instance of the √2 Cube.  In 

Figures Q1 and Q2 we now see the full context and how the √2 Cubic Lattice is intrinsic to the 

Tetrahedral-Octahedral Lattice.  

It is generally accepted that a unit-length Cube pattern is not a stable 3D form because spatial 

stability requires node Triangulation.  In the Tetrahedral-Octahedral Lattice the √2 Cubic Nodes 

are indeed Triangulated, just as we see in Figure B4.  From this observation we can probably 

conclude that, in Nature, stable cubic forms exist. They are ‘aspects’ of an underlying 

Tetrahedral-Octahedral Lattice … and the powerful notion of the Triangle-Square Duality.   

Regular geometric form holds many surprises in terms of spatial elegance.  Looking closer inside 

any given √2 Cube of the Tetrahedral-Octahedral Lattice, such as in Figure Q3, we see a 

characteristic pattern of the intersecting (Great) Triangles. 

 
13 Only one √2 Cubic Lattice is shown in Figures Q1 and Q2, but there are actually three distinct √2 Cubic Lattices 

within the Tetrahedral-Octahedral Lattice. A given √2 Cube has twelve √2 edges (i.e., struts, or lines of force between 

nodes).  In the Tetrahedral-Octahedral Lattice these edge/struts are formed by the √2 diagonal of each of twelve 

neighboring unit Octahedrons.  Given that there are three diagonals in each Octahedron, there are thus three distinct 

Cubic Lattices, spaced √2/2 apart.  The struts of each of the three distinct Cubic Lattices intersect at their midpoint in 

the center of each Octahedron (this is not modeled in Figures Q1 and Q2). 
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Figure Q3:  Characteristic Triangle Plane within a √2 Cube 

It is a Triangle of 2-unit length sides composed of 4 unit-length Triangles.  Eight of these 2-unit 

length ‘Great Triangles’ emanate from each cube vertex and intersect.  The interior triangle of 

each one composes one face of an Octahedron at center as shown in green in Figure Q4.   

 

Figure Q4: Tetrahedrons and Octahedron in relation to the √2 Cube – Isometric View 
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Each of the eight corners of the √2 Cube (in red) is formed by a unit Tetrahedron built off each 

face of the Octahedron (in green).  The outer vertices of any four adjacent Tetrahedrons form a 

plane that is the face of the √2 Cube.  The six vertices of the interior Octahedron meet at the 

center-point of each of the six faces of the Cube.  The center-point is unit-length distance to each 

corner of the Cube.  Figure Q5 is another view of this characteristic pattern of eight Tetrahedrons 

and one Octahedron forming a √2 Cube - the Lattice ‘building block’.14    

 

Figure Q5: Characteristic √2 Cube – Side View 

One can easily imagine an infinitely large Tetrahedral-Octahedral Lattice constructed by simply 

stacking together an infinite number of this building block.  A ‘block stacking’ visualization is an 

easier way to perceive the Tetrahedral-Octahedral Lattice than imagining intersecting planes of 

Triangles and Squares as in Figures C3 through C5.15   

Figure Q6 shows a stacking of four Characteristic √2 Cubes within a Tetrahedral-Octahedral 

Lattice. 

  

 
14 Figures Q4 and Q5 provide a good visual description of the concept of ‘duals’ in Solid Geometry.  The Cube and the 

Octahedron are duals.  

15 We seem to have an instinctual inclination, like proprioception, toward imagining 3D form in terms of Right-

Angles. 
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Figure Q6: Tetrahedral-Octahedral Lattice as a stacking of √2 Cubes  

For ease of understanding and visualization we can treat our Characteristic √2 Cube (formed 

with one Octahedron in green and eight Tetrahedrons in white) as a standalone building block.  

That said, there is really no such thing as a standalone form in the context of the ‘whole’ Lattice.  

Each ‘perceived’ standalone form in the Lattice can just as easily be perceived as space between 

neighboring elements that also appear to be standalone forms, and on and on.  The Lattice is an 

ordered mesh of shared elements (e.g., corners, edges, faces) in 3D.  It is here that our propensity 

to reduce things down to characteristic elements, i.e., the particle-mode perspective clashes with 

the notion that all things are intermeshed, i.e., the wholistic perspective. 

Yet, distilling complex patterns down to simple characteristics is very useful in our journey. For 

example, within the characteristic √2 Cube discussed above and introduced by Figure Q4 lies an 

elegant and significant sub-pattern.    
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Figure Q7: Triangles Creating Square 

In Figure Q7 we see two views of the planar ‘Great Triangle’ (in white) introduced in Figure Q3.  

Onto the interior Triangle we build a unit-Tetrahedron creating a 3D spatial pattern where the 

distances from the apex of the Tetrahedron to each corner of the Great Triangle are equal and √2 

in length (in red).  You will recognize this as one corner of a √2 Cube of Figure Q4.  The three 

red edges meeting at the apex are separated by 90 degrees, the characteristic of the Square. 

Figure Q7 is basically another visualization of the latent orthogonality of the Tetrahedron 

introduced in Figure A8.  What is elegant (if not truly magical) about this spatial pattern is that it 

shows how the Square, i.e., the notion of ‘equilibrium of direction’, is implicated in the notion of 

‘equilibrium of extent’, i.e., the Triangle.  The spatial pattern of Figure Q7 is another glimpse of 

the notion of Duality. 
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Fragmentation 

In his book ‘Wholeness and the Implicate Order’ (Bohm 1980), physicist David Bohm begins 

with the consideration of fragmentation and wholeness:  

 

“for fragmentation is now very widespread, not only through society, but also in each individual; 

and this is leading to a kind of general confusion of the mind, which creates an endless series of 

problems and interferes with our clarity of perception so seriously as to prevent us from being 

able to solve most of them”.  

 

The central theme of Bohm’s thought is the characterization of reality as: 

 

 “the unbroken wholeness of the totality of existence as an undivided movement without 

borders”. (Bohm 1980)   

 

Bohm describes our common mode of perception and thinking as one that leads us to understand 

‘things of nature’ as static objects that are decomposed and classified into ever smaller static 

parts, and then “reconstructed according to our observations into manageable scenarios.”  

 

Bohm implies that this thinking modality prevents perception of ‘unbroken wholeness’.  We 

seem to be biased toward spotting discrete forms, resulting in a fragmented worldview.  So, the 

goal is to develop the ability to sense ‘the whole’ in everything we perceive.  We return to our 

Geometric form study to help us understand how fragmentation in perception and thought can 

happen. Figures Q8 and Q9 provide an example: 

 

 

Figure Q8: Cube, Cuboctahedron and Truncated Octahedron Sub-Forms: Edge View  
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 Figure Q9: Cube, Cuboctahedron and Truncated Octahedron Sub-Forms: Vertex View  

Highlighted within the Tetrahedral/Octahedral lattice in these figures are the sub-forms of √2 

Cubes (in blue), the Cuboctahedron/VE (in green) and the Truncated Octahedron (in red).  In 

classical Geometry these forms are treated as standalone forms. The first a Platonic Solid, the 

other two are Archimedean Solids.  These forms have been studied and characterized in detail.16  

Classical Geometry is largely a library of standalone form characterizations that have been 

generated over centuries of study.  We have inherited this library along with a mode of 

perception to comprehend it.  When we look at just the highlighted sub-forms in Figures Q8 and 

Q9 our perception is ‘decomposing’.  When we see that the highlighted sub-forms are simply 

aspects of the same space-filling Tetrahedral-Octahedral Lattice, our perception is ‘wholistic’.  

The difference is stark.  Once we observe these forms ‘in context’ we can no longer comprehend 

the Cuboctahedron ‘in isolation’ from the Truncated Octahedron, for we now recognize that the 

former is just a smaller instance of the latter17. While they do indeed trace different patterns to 

the eye, they are really the same thing - the Tetrahedral-Octahedral Lattice - the Triangle-Square 

Duality.  

 
16 See Appendix D for more discussion on this topic. 
17 Going even deeper into form perception we can also consider the Tetrahedral/Octahedral Lattice as simply the 

Tetrahedral Lattice. This lattice is essentially a mesh of Tetrahedrons. It just so happens that the space between the 

mesh of Tetrahedrons are of the form of Octahedrons. Again, a shift of perception is required. 
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This example prompts awareness of the inherited assumptions and reflexive perspectives that we 

bring into our thinking, and how this pushes us unwittingly into fragmented thinking.   

Inherited Assumptions 
As a simple practice, a fundamental shift in our perspective can be experienced by re-

comprehending the Tetrahedron.  By and large, we have inherited the classical isometric 

perspective, shown below on the left, where we likely see the Tetrahedron as an opaque static 

object, that ‘pointy three-sided pyramid’ – end of story. 

 

 

Much richer is the perspective of the Tetrahedron on the right that shows the ‘dynamic’ of point 

equilibrium at play - the spatial harmonization of both distance and direction.  The curious truth-

seeker, I argue, will gain a more accurate perspective about natural and man-made forms more 

easily by building node-based models than by observing solid models.  Yet, historically, we find 

that students of Geometry predominantly worked in the medium of solid models. This is 

probably because resilient strut material and strong attachment mechanisms for stick-and-hub 

(node) modeling were simply not available to them.  It is likely that stick-and-hub models were 

patiently constructed in the past but, absent durable material, the models would have been too 

fragile to survive handling and storage over long periods of time. By contrast, solid models could 

be carved out of the readily available, pliable, and durable material of clay, using simple tools. 

Such models would last for generations and serve as a staple teaching tool for passing down 

knowledge.  Thus, solid models and the observational perspective they enforce, has dominated 

human thought. 

Solid Polyhedra have been characterized over a long historical time frame. As current recipients 

of this body of knowledge, we must acknowledge that Geometry study has become arcane and 

placed beyond the reach of most people. Although everyone would benefit from an intuitive 

understanding of Geometric pattern, both in Natural and Man-made form, there is a cultural 

failure to deliver it. We should treat qualitative spatial literacy as a birthright, so let’s dig deeper 

into this failure: 

It bears restating that Geometry is a language of its own.  It is easy to mistake the symbolic 

language that characterizes Geometric form, for the spatial language of Geometric form itself.  
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The former is an abstract second-hand comprehension; the latter is a direct intuitive connection 

to Nature itself.   

While paying due respect to the field of Solid Geometry, a critique is also in order: 

Classical Geometry rests upon the premise that base forms are ‘regular’. In the term ‘regular’ we 

should recognize, once again, the premise of ‘equality’ of parts, just as we posited earlier by the 

premise of the equality of strength of our imagined points in space.  In classical Geometry the 

regular base forms are the Platonic solids, e.g., Tetrahedron, Cube, Octahedron, Dodecahedron, 

Icosahedron. New forms are derived by executing the same action on all same aspects of the base 

form, for example, truncating/shaving all edges, truncating all vertices, swapping corners for 

faces and vice versa to find ‘duals’, or stellateing all facets to equal height. It should come as no 

surprise then that the resulting forms are also ‘regular’.  And that subsequent actions on the 

derived forms will again result in new regular derived forms, and on and on. 

To restate simply: A given regular solid, subjected to a consistent transforming action 

(transform), produces a new regular solid, i.e., (Regular IN → Same Transform on all Like 

Aspects → Regular OUT).  This is the underlying workflow of classical solids study. (Like 

sculpting clay, or carving ice, anyone can do it! There is no impenetrable mystery here.)   

Now, given infinite possible degrees to which a transform can be applied, (e.g., the depth of the 

truncation, the height of a stellation, etc.) it should also be appreciated that an infinite number of 

derivable forms are possible. If we shave enough, we work our way towards a sphere-like 

polyhedron where the number of facets approaches infinity.  In practice, however, only 

mathematically special forms in that infinite set are significant and passed down (the 

Archimedean Solids is one example).   

In this way, over the long arc of history, new forms were derived, characterized by 

measurements of their features (e.g., counts of vertices, edges, facets, angles, etc.) and named per 

a structured nomenclature. A body of knowledge was thus built, and as previously mentioned, 

most people encountering it are perplexed by it: What do all these measurements mean? What 

are they used for?  Who uses them and why? Most are intimidated and turn away, a tiny few 

pursue it in university-level studies.  

What is missing in the current art of Geometry study can be illustrated by a comparison of a still 

photograph of a person to a video of the person interacting with others.  The video ultimately 

gives the viewer a better ‘feel’ for the subject’s personality. Even if we measured all the various 

aspects of the person’s physical form and published those values next to the photograph, to most 

people, the video of the ‘person in motion’ will still be a more valuable characterization. So too, 

observing a node-based Geometric model in a progressive, dynamic buildout will be more 

valuable than observing a measured and characterized static model. Unfortunately, such 

qualitative study is absent from our classrooms and in our culture of play.   
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Epilogue 
Our journey with Geometry modeling has served us well. It extended the reach of our perception 

allowing us to sense operating principles behind Nature’s form-making that we would not able 

be to visualize in our imagination. It gave us a basis to understand how, with a simple palette of 

Planes, Lattices, Cages and Tubes, Nature has tremendous freedom and power of variation to 

construct the diverse physical world of form that we see.   

From this journey, we may conclude that the true significance of Geometry modeling lies not in 

a plethora of measurements and mathematical characterizations, but in its ability to give our 

imaginations a ‘qualitative feel’ for how, in Nature, complex physical structures can be built 

from simple patterns.  
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Appendix A: Whole Number Dilemma 
We wish for a simple elegance in all of Nature’s forms, where all form is based solely upon 

patterns of whole numbers. Pythagoras purportedly exclaimed “All is Number!”.  However, we 

find that we must deal with irrational numbers, such as the √2 diagonal of the square, the √3 

diagonal of the cube, and other non-integer node relationships.  

Recall that the Icosahedron represents a cage pattern of twelve nodes that are in unit-length 

equilibrium with each other and perfectly balanced around a spatial center.  At first blush it 

appears that the twenty equilateral faces of the Icosahedron might be assembled from twenty 

Tetrahedrons, each with one vertex meeting at the center.  While close, this is not the case. 

Let’s analyze: 

Let’s assume that the Icosahedron can be derived from twenty regular Tetrahedrons mated at 

their faces and all touching at a single vertex at the center.  In Figure G1 we isolate one 

Tetrahedron in this scenario, shown with three edges of the outer face in blue and three interior 

edges in red.  The struts in red go inward and intersect at the center of the form.  The struts in 

blue form one facet of the Icosahedron.   

 

Figure G1: Icosahedron with False Interior Tetrahedron 

We now disprove this assumption by showing that the inner struts in red are not equal in length 

to the unit-length blue struts, and therefore are not equilateral Tetrahedrons, and thus, regular 

Tetrahedrons do not comprise an Icosahedron.   
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If regular Tetrahedrons can create an Icosahedron, then the sub-form of Figure G2 is possible.18  

It is comprised of five unit-length equilateral Tetrahedrons.  There would be twelve such sub-

forms inter-meshed to form the full Icosahedron, somewhat like in Figure D5. 

 

Figure G2: False Icosahedron Sub-Form 

We note that the outer edges of Figure G2 form a Pentagon.  The Pentagon has interior angles of 

108º.  Each interior face (one is shown in yellow) bisects this angle, therefore angle Z = 54º.  

However, through a trigonometric analysis of the regular Tetrahedron we find that the angle 

between an edge and an opposing face, i.e., angle Z, is 54.74º.  A small difference, but 

nevertheless, it is a contradiction that proves that the sub-form in Figure G2, hence our 

assumption that the Icosahedron can be created from twenty regular Tetrahedrons, is false. 

Hypothetically, the interior of the Icosahedron could be comprised of twenty tetrahedrons, but 

they would be irregular Tetrahedrons composed of one equilateral Triangle on the outside face 

and three isosceles Triangles on the interior faces. The length of the edges of the isosceles 

triangles represents the distance from the outer vertices of the Icosahedron to its center.   

 
18 The modeling tool used for the model in Figure G2 is a ‘compensating’ modeling tool. It has flexibility to 

compensate strut length to a small degree and thus can compress the interior struts to slightly less than 

unit-length. It is thus able to form slightly squashed Tetrahedrons and Pyramids.  The beauty of the 

compensating modeling tool is that it allows us to find the pattern of subsequent Icosahedral cages 

building out from smaller cages.  In build-out, pre-imagining the pattern of the next larger cage is 

exceedingly difficult.  It is much easier to do when you can experiment with different possible patterns 

using the modeling tool itself.  
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We can calculate that length using the observation that inside the Icosahedron are ‘Golden 

Rectangles’. The edge ratio is 1.618 (Phi) to 1, per Figure G3.  The length of the diagonal of that 

rectangle, X divided by 2, is the distance from the Icosahedron’s vertices to the center. 

 

Figure G3: Golden Rectangle Within Icosahedron 

Using the Pythagorean theorem, we find that the midpoint of the Golden Rectangle’s diagonal, 

(X/2), is ~0.951.  Though devilishly close to unit-length, it is not unit-length, demonstrating that 

the Icosahedron forms as a ‘Cage’ which is fundamentally different than Lattice formation.  

Icosahedral form grows as a series of concentric cages that have a spatial center but not a ‘point 

of force’ at the center. The only pattern of twelve points at unit equilibrium around a center point 

is the pattern of the VE (Cuboctahedron) shown in Figures C5 and C8. 

Appendix B: The Splendor of Self-Similarity 
Figure H1 is a mélange of Icosahedral buildouts that illustrate the notion of Self-Similarity with 

the patterns of five occurring at the different layers of the models.   
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Figure H1: Icosahedral Buildout Variations 

Figure H2 is a meditation on Icosahedral Self-Similarity: 

  

Figure H2: “As Above – So Below”  

Appendix C: The Number Seven 
In the field of Sacred Geometry, the number Seven (7) is enigmatic.  It is not formable by the 

compass-and-straightedge techniques of Sacred Geometry* and does not show up in classical 
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study of solids. However, when viewing nodes of a 3D cubic pattern the significance of the 

number seven is evident as seen in this isometric view of a constellation of seven orthogonal 

points at unit length distance. 

 

Figure I1: Perfect Spatial Balance  

 

This is the simplest expression of point equilibrium, an equilibrium with two aspects, the 

equalization of extent (unit length) and direction (orthogonality).   

* Notice the symbol of the Masons below - Compass and Square juxtaposed. These are the tools 

of Sacred Geometry but should also symbolize for us the notion of the spatial balance of extent 

and direction. 
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Appendix D: Expansion of the Tetrahedral-Octahedral Lattice 
In the discussion on Fragmentation above we saw that the Cuboctahedron (Vector Equilibrium) 

and the Truncated Octahedron are but ‘aspects’ of the Tetrahedral-Octahedral Lattice yet they 

are commonly studied as standalone Archimedean forms.  In buildout, as the node count 

increases19 even more unique aspects of the Lattice are possible.  Figures J1 and J2 show another 

variation of the Cuboctahedron sub-form. 

 

Figure J1: Truncating a Large Tetrahedral-Octahedral Lattice 

In Figure J1 each corner of the Tetrahedral-Octahedron Lattice is about to be truncated per the 

red lines to produce six Square facets of 2x2 unit squares.  Recall that with the Archimedean 

Cuboctahedron unit Squares facets are complemented by Triangle facets.  In the Archimedean 

Truncated Octahedron, unit Square facets are complemented by Hexagon facets.  Figure J2 

shows how the 2x2 unit Square facets are complemented by what might be termed ‘hybrid’ 

Hexagons.  Instead of regular Triangle or Hexagon faces, we have here non-regular Hexagons 

where three sides are 1-unit-length and three sides are 2-unit-length.  

 
19 The terms ‘node count’ and ‘frequency’ are virtually synonymous.  The more nodes, the higher the frequency of the 
form.  
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Figure J2: Form of the Second Expansion of Cuboctahedron 

Figure J2 basically shows us what the base pattern of the Cuboctahedron/VE looks like in 

expansion.  Where the Truncated-Octahedron is the first expansion pattern from the 

Cuboctahedron, Figure J2 shows the second expansion pattern. However, unlike the 

Cuboctahedron and the Truncated Octahedron, the face pattern of Figure J2 is not among the 

Archimedean face patterns.  

As the Tetrahedral-Octahedral Lattice grows larger there are likely more unique face patterns 

possible. What Triangle/Hexagon faces are possible when the Square facets are 3x3 unit 

Squares, 4x4, etc.? 

 

 

  

 

 


